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In [2] Richard Crandall and I establish normality base p for the class of constants

αp,q =
∞∑

k=1

1

qkpqk

where p and q are co-prime. The proof given in [2] is somewhat difficult and relies on
several not-well-known results, including one by Korobov on the properties of certain
pseudo-random sequences. In this note I show that normality can be established much
more easily, as a consequence of what is sometimes call the “hot spot” theorem. The “hot
spot” theorem is as follows. In the following, {·} denotes fractional part.

“Hot Spot” Theorem. The real constant α is normal base b if and only if there exists
a constant C such that for every subinterval [c, d) ⊂ [0, 1),

lim sup
n≥1

#0≤j<n({bjα} ∈ [c, d))

n
≤ C(d − c).

In other words, normal numbers have no “hot spots”, and conversely a non-normal
number must have hot spots — there must be digit strings that appear, say, one billion
times more often than the frequency they would appear if the number were normal. A
proof of the hot spot theorem, using the Birkhoff ergodic theorem [3, pg. 13, 20-29], is
given in [1], where it is used to establish that a rational times a normal number is normal.
The hot spot theorem is proved by a different (but more difficult) argument in [4, pg. 77].

Here is how the hot spot theorem can be used to establish normality for the α constants
studied in [2]. In this note I will use α = α2,3, namely

α =
∞∑

k=1

1
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but the proof is very similar for other αp,q constants from [2].

Theorem. α is normal base 2.

Proof: First note that the associated sequence (in the BBP sense) for α is x0 = 0, with
xn = {2xn−1 + rn}, where rn = 1/n if n = 3k, and zero otherwise. As above, the notation
{·} denotes fractional part. Observe that the x sequence has the pattern

0, 0, 0, 1/3, 2/3, 1/3, 2/3, 1/3, 2/3,

4/9, 8/9, 7/9, 5/9, 1/9, 2/9, 4/9, 8/9, 7/9, 5/9, 1/9, 2/9, 4/9, 8/9, 7/9, 5/9, 1/9, 2/9,

1



and so forth. Note that for n < 3k+1, each xn is a multiple of 1/3k, and each fraction
j/3k, 0 ≤ j < 3k appears exactly three times in the sequence. Also note that

|xn − αn| =

∣∣∣∣∣∣

∞∑

k=n+1

2n−krk
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<

1
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where αn = {2nα} is the tail of the binary expansion of α after the first n bits.
Given n, let m be the largest power of 3 less than n, and assume that n is large enough

so that n > m > 1/(d − c). Now note that the interval [c − 1/(2n), d + 1/(2n)) contains
exactly m(d− c) (or possibly one more than this number) multiples of 1/m, and thus can
contain at most three times this many occurrences of xj in the first n elements, assuming
n > m. Thus for n > m we have

#0≤j<n(αj ∈ [c, d))

n(d − c)
≤ #0≤j<n(xj ∈ [c − 1/(2n), d + 1/(2n))

n(d − c)

≤ 3[m(d − c) + 1]

n(d − c)
<

3[m(d − c) + 1]

m(d − c)

= 3 +
3

m(d − c)
< 6

In other words, for all n > 3(d − c), say, no subinterval of [0, 1) has more than six
times as many elements of xj as it “should” in the first n elements, and no binary string
appears more than six times as often as it “should” in first n bits of the binary expansion
of α. By the hot spot theorem, this establishes that α is normal base 2.
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